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The shape of the interface is determined between plasma flux with frozen- 
in magnetic field and the cavity filled by the magnetic field of a plane dipole. 
The cavity is found to be closed, and suggests a crescent with a hemispherical 
protuberance on the convex side, turned toward the flow of plasma. 

If the external field is parallel to the velocity vector of the flow, the 
interface curves or bends inside in polar regions and in the posterior part 
near the equatorial plane. 
t o  the velocity, 
and the boundary of the tail is constituted by a circle. 

When the outer field is directed perpendicularly 
the hollows are absent at poles and in the posterior part, 

* 
* * 

In the Chapman-Ferraro model the cold plasma is separated from the cavity 
filled by the magnetic field by a thin current layer [l - 31. The problem of 
the shape of this interface offers great interest in connection with the pro-. 
blem of solar wind interaction with the geomagnetic field. The determination 
of the exact shape of the interface is beset with great mathematical difficul- 
ties. 
the shape of the interface in case of plasma flow past an infinite conductor 
with current is determined approximately in [4], and the exact solution of the 
method of conformal transformation is given in [5, 61, the shape of the inter- 
face between plasma flow and the magnetic field of a plane dipole is found 
exactly in [ 7  - 91. Methods for the solution of the corresponding three-dimen- 
sional problem have been worked out only lately; the self-consistent field 
method [lo] and the method of technique of moments [ll]. The three-dimensional 
problem on the shapa of magnetosphere boundary at isotropic external pressure 
is resolved by the integral equation method in [12] and by the technique of mo- 
ments in [13], and the corresponding two-dimensional problem - by the method 
of conform21 transformation in [14, 151. 

Various two-dimensional models were considered in a series of works: 

(*) 
PLAZMY I POLOST'W S PLOSKIM DIPOLEM. 

VLIYANIYE VNESHNEGO MAGNITNOGO POLYA NA FORMU GRANITSY MEZHDU POTOKOM 
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e In these models the interplanetary magnetic field, of Sy intensity, is 
not taken into account [16, 171 ; its pressure is negligibly small on the day- 
time side, where the main acting force is the dynamic pressure of the super- 
Alfv6n flow. llowever, on the night side of the magnetosphere the interplane- 
tary magnetic field may exert a substantial influence on the position and shape 
of the magnetosphere tail because of rapid drop in the value of the dipole 
field [18]. Because of the complexity of the problem, we shall consider a two- 
dimensional model in which only the dynamic pressure of the flux, the external 
field for the plasma outside the cavity, and the pressure of the magnetic field 
with the singularity of plane dipole type inside the cavity are taken into 
account. The gas-kinetic pressures inside and outside are supposed to be iden- 
tical, for a rapid plasma diffusion through the interface takes place as a con- 
sPquence of a series of instability mechanisms. The problem is resolved in the 
first approximation of the generalized self-consistent field method [lo]. 

It is assumed that the plane dipole is directed perpendicularly to flow 
velocity, and two limiting cases of interplanetary field orientation are consi- 
dered: along and perpendicularly to flow velocity. In the present model, we 
discounted certain factors exerting a substantial influence on the shape of 
the magnetosphere tail, and leading to the open magnetosphere model [19, 201 
that finds experimental corroboration [Zl], and on account of this the results 
of our work fail t9 provide an answer to the question of the true shape of the 
magnetosphere tail. 

STATEMENT OF "E PROBLEM. Assume that a plane magnetic dipole is situa- 
ted at coordinate origin and directed along the axis y, and that the plasma 
velocity is directed along the axis - x. 
the form 

The boundary condition is written in 

(1) 
c. 1. X ] l i 1 2  - 111 x &,I2 = 8Xp,(Jl*\-) ' .  

Ilere l i , ,  11,: are respectively the inner and the outer field; po is the 
is the unitary 

Moreover, we consider, as usual, that the n o m 1  component 
dynamic pressure maximum; 3 
velocity vector. 
of the magnetic field at the interface is zero. 

is the normal to the surface; 

If the surface is given by the equation F ( r ,  cp) = r - -  H ( q )  =-- 0, the pro- 
jections of the normal, of the unitary velocity vector and of the magnetic 

orts of a cylindrical system of coordinates will be presented 
fashion : 

field on unitary 
in the following 

llere lb is the unperturbed field of the plane dipole;R,, is the outer 
magnetic field, parallel to the velocity. 
f i e l d  is perpendicular to flow velocity, we have 

In the case when the outer magnetic 

Bo = / ; > { - i ~ t q ,  c m y ] .  (3) 
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I!' tlic sh;ip> c3l- tlic wrfact. is h i i c x i i .  i t  i.; p~ss ib1~-  t o  I*iial I I L I ~ I ~ . ~  I < -  

Ilowevex-, neither the f i c lds  I:.. I!,.nor 

-.  : i e l c l s  ins ide  :is we11 ;is outside. 11' to  the coiiti-;ii-!', thc l - i c 8 1 J s  ;II-L'  h ~ i o \ ~ ~ ~ ~ ,  
the surt'ace may be deteiiniried from (1).  
thc surfacc a re  known in (1). 
method of sclr-consis tent  f i e l d  proposed i n  [ 3 ] .  Because of the presence of 
t h c  outer  f i e ld  I:.. the qeneralization of t h i s  method is prerequis i te .  
considcr i n  the f i r s t  approximation tha t  the interface is plane and we s h a l l  
:issumc tha t  the field induced by surface currents ,  cons t i tu tes  the s m  of 
t5e fjelds l ! r w l  J;:. whereupon the f i e ld  B, compensates the dipole f i e l d  out- 
side, and t h e  f i e l d  i::-tIie unperturbed outer  f i e l d  inside. The plane superf i -  
c ia l  cu r ren t  creates  on e i the r  s ide of the plane magnetic fields, ident ica l  
in  magnitude, but opposite i n  direction. This is why, i n  the first approxima- 
t ion  of the se l f -cons is ten t  f i e l d  method we have 

To overcome t h i s  d i f f i cu l ty  we applied the 

We s h a l l  

-- from the inside of the interface : 1: ' - - -  1" + H A  4- It,,, 

- from the outside of it : I;,. = --E + B g i -  132. 

Tnasmuch as 

I?; -t 13- = 0. lj, <- I:,, 0, 
we find 

Substi tuting re la t ions  (4) in to  ( l ) ,  we obtain i n  the first approximation 
the following equation: 

The tinit of length I ? ,  = (2.W / xp,)c2)''* is introduced here ; the  dimensionless 
cliiniitity fi., = n,/ (z-T~,~)"  characterizes the outer f i e l d ,  which is considered t o  
1w oriented along thc wind velocity.  

I'crforming the  subs t i tu t ion  of variables y = r2, x = tg4, Eq.(5) w i l l  
take the forni 

In the case,  when the f i e l d  Bo is perpendicular t o  the veloci ty ,  we s h a l l  
obtain instead of (6) the equation 



4 .  

Slbll'l~ OF 'HE INTERFACE WI'II1 OUTER FIELD PARALLEL TO WI,KITY. I Q .  ( h )  
is su f f i c i en t ly  complex, thus  making it prac t ica l  t o  break the interface 
doim t o  f ive  regions (Fig.1). The f i r s t  region (segment AB) spreads from 
the flow's stagnation point t o  the neutral  point.  Vie second region (BC) 

is the pa r t  of the interface between the neu- 
t r a l  Taint and the center  of the cavity.  The 
th i rd  region (segment CD) is the portion bet-  
ween the center of the cavity and the point ,  
a t  which the plasma flow h i t s  d i r ec t ly  the 

part  of the t a i l  subject t o  the act ion of the 
Fig. 1 solar  wind. The f i f t h  region (segment EF) is 

the t a i l ,  protected from t h e  action of the 
flow by the protruding fourth region. Eq.(6) 

f 

x// - 
Y f - --+ _----  ------ interface.  The fourth region (DE) is the 

0 

may be simplified i n  each of the regions. 

F i r s t  Region. 
for the solution of (6) i n  the ioim y = yo-+ p;Ly1. Then 

Here we may consider Bo2as a small parameter and search 

where we assumed during the determination of the constant i n  the solut ion tha t  
y1 = 0 a t  x = 0 ,  fo r  a t  tha t  point the outer  f i e l d  vector lacks the tangential  
component and exerts  no pressure upon the surface.  

The boundary of t h i s  region i s  the neutral  point a t  which the  surface (8) 
I t  is easy t o  see tha t  a t  the neutral  point hecomes pa ra l l e l  t o  the velocity.  

consistent f i e l d  method, t h e  neutral  point ,  i n  the absence of outer  f i e l d ,  is 
located on the polar axis  [22], whereas i n  subsequent approximations it i s  
displaced in a direct ion toward the Sun by approximately 20° [ lo ] .  Therefore, 
the accounting fo r  an outer f i e l d  para l le l  t o  veloci ty  leads t o  a supplementary 
s h i f t  of t h e  neutral  point i n  the same direct ion.  

y = - - ?  / B O .  I t  is  well hown tha t  i n  the first apprcximation of the s e l f -  

Second Region. Here the dynamic pressure of the flow is absent and Eq.(6) 
takcs the foim 

-i( 1 --- 1 + 2 2  sy' ) = -Po( 2 -t- T-) 1+s2 y' . 
Y 2 Y  Y (9) 

Taking in to  account tha t  z>1, it is  prac t ica l  t o  search f o r  the solut ion 
i n  the form O C  a series by inverse powers of - x : 

0 

y = anZ-", 
n=O 

whcrc a: = --2poao2, a? = -ao+ 3p0W, u3 = 2fi0ao2(l -s5/$~2a02). The coeff ic ient  a0 
may I C  found by joining the solutions i n  the neighboring regions, 

. ./. . 
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I'hird Region. The solut ion in  the t h i r d  region is given by formula ( l o ) ,  
i n  rvhic-h t h e  sign before Bo is reversed (here x > 0 ,  so tha t  i n  the second and 
th i rd  regions the in te r face  i s  symmetrical r e l a t ive  t o  polar ax is ) .  

Fourth Region. In t h i s  region Bf is a l so  a small parameter; however, 
the zero solut ion 

(1 + 9)" + i 2 

Yo=( Z ) 
t ha t  i s ,  the solut ion i n  the absence of the outer  magnetic f i e l d  d i f f e r s  from 
the zero solut ion i n  the first region; 

bccornes n more complex problem (the solut ion is  sought f o r  i n  the form 
i n  connection with t h i s  the finding of 

y L= yo + BO~Yl) . .  

Subst i tut ing (11) in to  ( 6 ) ,  we obtain f o r  y1 the following equation: 

The soliition of ( 1 2 )  may bc representcd i n  the form 

\:or x>>i the value of y, is 

yi ="(c+!?); 8 

2 13 
i o  i n  ing thc  solutions in  neigliboring regions, we obtain C = -2p0 In - - - po. 
1:01- s <-. 1 BQ 2 

1,ct us f ind  the point ,  a t  which the tangent t o  the interface is p a r a l l e l  
assuming t h a t  a t  t h a t  point ~0 < 1, and u t i l i z i n g  (14), we t o  f-loic. ve loc i ty ;  

ai-rive a t  the approximate equation 
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8- 

and for  such a Bo the  rejected middle term 
I f  B(, is very small, we have approximately +O M 1'34p;. Typical f o r  the 

~ 0 1 ~ 1 1 -  rcind is t h e  value B o  = 0.1,  
i n  (15) may r e su l t  t o  be essent ia l .  However, determining graphically the root 
of  IJq. [ 15) , we may f ind the assurance tha t  the accounting of t h i s  term changes 
very l i t t l e  the value of the root found by the approximate formula. 

F i f t h  Region. Here the dynamic pressure does not a c t  upon the surface and 
1:q. (6) thus takes the form 

01' 

We sha l l  search f o r  the solution of t h i s  equation by the method of conse- 
cut ive approximations, select ing fo r  the zero approximation the quantity 

0' ylx=,: = g o  a t  the i n i t i a l  point of the f i f t h  region, x = x 

The formal solut ion w i l l  be writ ten i n  the form 

whence i n  the f i r s t  approximation 

o r  

SHAPE OF THE INTERFACE WHEN THE OUTER FIELD IS PERPENDICULAR TO VELOCITY. 
F i r s t  Region. 

I t  may be seen tha t  the unique solut ion of Eq.(7), not having a sin- 
As in  the preceding case we must consider as a small pa- 

rameter. 
gular i ty  on the polar axis, is 

The Second and the Third Regions a re  absent. 

Fourth Region. We sha l l  seek the solution i n  the form of series by the 
small parameter BoZ . Substi tuting the sero solut ion (11) in to  (7) ,  we obtain 

. ./. . 
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8 

of wh.ich the solution is 
-- 

i - 5 f l +  x2 

1'1 + 2*()/1+ x* - I )  
(1 + z2)= 

(fl + P - i)' + In - 1'1 + z"(di + 3 2  + 1) 

2(y'l+22- 1) 
y l =  - 

be 
As x -+ 0 0 ,  the solution must/finite; this is why we must consider C = 0. 

The solutions of first order relative to 6 2  in the first and fourth regions 
then have a discontinuity of first kind on the polar axis, result which is by 
no means unexpected. It is well known that in the first approximation of the 
self-consistent field method there are 
Eq.(l) do not exist if the exact value of the magnetic field is substituted by 
an approximate one [lo]. The followin? approximations must liquidate this 
discontinuity. 
to the flow, the discontinuity vanishes too and the constant C is not zero. 

points, at which the solutions of 

If the magnetic field Bo is oriented strictly perpendicularly 

The second singularity of the case considered, when the velocity vectors 
and the outer field are perpendicular, is the absence of such a point in the 
fourth region, where the surface is parallel to the velocity. 
3 point existed, the dynamic pressure would be absent at it, both of the flow 
and of the outer magnetic field, since the velocity is parallel to the tangent 
to the surface, while the outer magnetic field has no tangential component. 
As a consequence, the terms 

Indeed, had such 

of ( 7 ) ,  would become zero concomitantly, which is impossible. 

Fifth Region. The dynamic pressure of the flow is absent and Eq.(7) 
takes the simple form 

It is seen that the unique solution having m y  physical sense is the 
c i rcumference 

(22) y = 1 I Bo- 

Therefore, the boundary of the fourth region is the point of intersection 
with the circumference (22) .  
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Wc rc rcscntcd i n  F ig .  2 thc uppc half  of thc intcrfacc a t  B o  = 0.1. 
'I'hc sol id curvc corresponds t o  the'ctlse of the outer ficlcl paral le l  t o  the 
vc\locity, and thc dashed curve - t o  t h e  case of the outer  f i e ld  pcrpendicu- 
l:ir t o  the velocity.  The Lln i t  of length is the distance t o  the interface a t  
[low stagnation point.  

A t  Bo = 0.1,  Eq. (15) takes the form 

9 - [ 0,57 + O,G6 In 

Tf we re jec t  the second term from the l e f t ,  xo = 0 . 8 4 .  The graphical so- 
lut ion of (23) gives xo = 0.96. This re su l t  
\\xs u t i l i z e d  during the construction of the 
curvc i n  Fig.2. a I t  should be noted tha t  the r e su l t s  obtained 

' 0 .  I 2 3  
in  the present work a re  not applicable f o r  the 
invest igat ion of the s t ruc ture  of the magneto- 
sphere t a i l ,  f o r  i n  r e a l i t y ,  besides the magnetic 
and dynamic prcssures other  forces ac t  i n  the t a i l  
119, 2 3 1 ,  of which the  nature is  still not qu i te  
we11 ascertained. Moreover, the small value of 
the dis tance,  over which the t a i l  of the interface closes ,  is found t o  be i n  
contradiction wi th  the estimate of cavity length behind the magnetosphere, 
( -  100Rlj ) , in to  which the so la r  plasma does not reach because of the high 
'Inch number 1191. Experimental measurements of magnetic f i e l d  in tens i ty  i n  the 
ma!yietosphere ta i l  have shown tha t  the interface does not c lose a t  least up t o  
30 RF , and the magnetic f i e l d  is directed r ad ia l ly  and changes sign a t  transi- 
t ion 'through the  neutral  layer  s i tuated i n  the equatorial  plane [21] .  

Fig. 2 

A P P E N D I X  

R1C;OROUS SOLUTION OF EQ.(7). This equation may be represented as follows: 
-- 

y' 1'1 - Bo%: 4- 6ar 

y 1'1 - pozy2 - 6y t (1 + 2 2 )  

2 - i= 1 

diere 6 = 1 a t  the l-onmrd pa r t  of the inter'face, 6 = -1 a t  the p a r t  of the 
t a i l  subject t o  dynamic pressure of the flow, and 6 = 0 i n  the pa r t  of the t a i l  
not d i r ec t ly  h i t  by the flow. The rigorous solut ion of t h i s  equation has the 
form 
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